Nanoporous anatase TiO2 mesocrystals: additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior.

نویسندگان

  • Jianfeng Ye
  • Wen Liu
  • Jinguang Cai
  • Shuai Chen
  • Xiaowei Zhao
  • Henghui Zhou
  • Limin Qi
چکیده

Unique spindle-shaped nanoporous anatase TiO(2) mesocrystals with a single-crystal-like structure and tunable sizes were successfully fabricated on a large scale through mesoscale assembly in the tetrabutyl titanate-acetic acid system without any additives under solvothermal conditions. A complex mesoscale assembly process involving slow release of soluble species from metastable solid precursors for the continuous formation of nascent anatase nanocrystals, oriented aggregation of tiny anatase nanocrystals, and entrapment of in situ produced butyl acetate as a porogen was put forward for the formation of the anatase mesocrystals. It was revealed that the acetic acid molecules played multiple key roles during the nonhydrolytic processing of the [001]-oriented, single-crystal-like anatase mesocrystals. The obtained nanoporous anatase mesocrystals exhibited remarkable crystalline-phase stability (i.e., the pure phase of anatase can be retained after being annealed at 900 °C) and improved performance as anode materials for lithium ion batteries, which could be largely attributed to the intrinsic single-crystal-like nature as well as high porosity of the nanoporous mesocrystals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Additive-free synthesis of unique TiO2 mesocrystals with enhanced lithium-ion intercalation properties†

Unique nanorod-like mesocrystals constructed from ultrathin rutile TiO2 nanowires were successfully fabricated for the first time using a low-temperature additive-free synthetic route, and the mesocrystal formation requirements and mechanism in the absence of polymer additives were discussed. The ultrathin nanowires were highly crystalline and their diameters were found to be ca. 3–5 nm. The ru...

متن کامل

Self-assembled nanoporous rutile TiO2 mesocrystals with tunable morphologies for high rate lithium-ion batteries

ont matter & 2012 n.2012.02.009 thors. : wei-mingdeng@f .edu (G. Cao). Abstract Wulff-shaped and nanorod-like nanoporous mesocrystals constructed from ultrathin rutile TiO2 nanowires were successfully fabricated for the first time in the presence of the surfactant sodium dodecyl benzene sulfonate (SDBS). SDBS played a key role in the homoepitaxial selfassembly process, in which titanate nanowir...

متن کامل

Iso-Oriented Anatase TiO2 Mesocages as a High Performance Anode Material for Sodium-Ion Storage

A major obstacle in realizing Na-ion batteries (NIBs) is the absence of suitable anode materials. Herein, we firstly report the anatase TiO2 mesocages constructed by crystallographically oriented nanoparticle subunits as a high performance anode for NIBs. The mesocages with tunable microstructures, high surface area (204 m(2) g(-1)) and uniform mesoporous structure were firstly prepared by a ge...

متن کامل

TiO2 modified FeS Nanostructures with Enhanced Electrochemical Performance for Lithium-Ion Batteries

Anatase TiO2 modified FeS nanowires assembled by numerous nanosheets were synthesized by using a typical hydrothermal method. The carbon-free nanocoated composite electrodes exhibit improved reversible capacity of 510 mAh g(-1) after 100 discharge/charge cycles at 200 mA g(-1), much higher than that of the pristine FeS nanostructures, and long-term cycling stability with little performance degr...

متن کامل

Facet-induced formation of hematite mesocrystals with improved lithium storage properties.

In this study, we prepared high-stability hematite mesocrystals by a facile route without polymer additives. In particular, the rhombic hematite mesocrystals exhibit excellent lithium insertion behavior compared to the hematite single-crystals.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 133 4  شماره 

صفحات  -

تاریخ انتشار 2011